Antimicrobial stewardship is becoming an increasingly important focus in long-term care settings. The Notice of Proposed Rulemaking, Medicare and Medicaid Programs: Reform of Requirements for Long-Term Care Facilities proposes that facilities must establish an infection prevention and control program, which must include, (among other elements), an antibiotic stewardship program with antibiotic use protocols and a system to monitor antibiotic use. Although it is unknown when, or if, the revised requirements will become effective in the proposed format, release of the draft document produced both anxiety and enthusiasm for improving the use of antimicrobial agents in long-term care settings.

Long-term care facilities who desire to be preemptively responsive to these requirements can be guided by the basic tenets of antimicrobial stewardship released by the Centers for Disease Control. This guidance outlines the core elements of antibiotic stewardship: (1) leadership commitment, (2) accountability, (3) drug expertise, (4) action, (5) tracking, (6) reporting, and, (7) education.

While the Centers for Disease Control provides a comprehensive framework to approach improved antibiotic usage, specific tools are needed in order to implement these strategies successfully and reduce inappropriate antibiotic use in the long-term care setting. Inappropriate antibiotic use is well documented in long-term care settings and is likely to increase because of the pressure to reduce unnecessary hospitalizations and hospital readmissions related to changes in Medicare payment strategies. More long-term care patients may be treated in place, and if antibiotic prescription is inappropriate, it could lead to increased side effects, costs, and antibiotic resistance. Minimum criteria for initiation of antibiotics in long-term care have been published for urinary tract infections, skin and soft tissue infections, and respiratory tract infections (including pneumonia). Key strategies to improve the appropriateness of antibiotic use and reduce antibiotic resistance may include protocols or algorithms to promote selection of antimicrobials with a narrower spectrum of activity, guide implementation of duration-limited therapy, and prompt for conversion of intravenous to oral antibiotics, where appropriate. Algorithmic approaches should be informed by evidence and individualized for use to effectively and safely improve antimicrobial stewardship while maintaining or improving the overall quality of care for nursing home residents with infectious diseases. An antimicrobial formulary that is specific to infections common in postacute and long-term care residents is suggested to aid in the selection of antimicrobials that have demonstrated effectiveness and safety in older adults, and that are cost-effective. Such an approach is supported by Omnicare's Geriatric Pharmaceutical Care Guidelines (GPCG).

The GPCG is written by the University of Science in Philadelphia, undergoes external peer review and is endorsed annually by the American Geriatrics Society "as a valuable tool in guiding geriatric patient care (drug therapy) in long-term care and ambulatory settings." The GPCG contains clinical evaluation of drug therapies, recommended dosage ranges for adults with normal and impaired renal function, and relative cost information. In addition to the external review, each of these algorithms is updated annually by the Omnicare Pharmacy and Therapeutics Committee.

For antibiotic prescribers currently in the trenches, we offer 5 algorithms that may be convenient and easy to use. By limiting antibiotic choices to those with the most supportive evidence of effectiveness and safety the management of urinary tract infections (Figure 1), catheter-associated urinary tract infections (Figure 2), upper respiratory tract infections (Figure 3), pneumonia (Figure 4), and uncomplicated skin and soft tissue infections (Figure 5) have proven to be most useful. Each algorithm presents guidance for assessing older adults with signs, symptoms, and objective findings consistent with infection and then directs clinicians to select appropriate empiric therapy prior to the time culture and sensitivity information becomes available for suspected bacterial infections.

By using these quick-reference tools, clinicians can make care more evidence-based, shorter in duration and safer, while helping...
Algorithm for the Antimicrobial Management of Urinary Tract Infections in Older Adults

Patient presents with signs and symptoms of UTI
- cloudy, foul-smelling urine, pain on urination, new or worsening urinary frequency, lower abdominal pain/discomfort

Criteria met for treatment with antibiotics (i.e. symptomatic bactururia)
- assess for medication allergies
- assess for renal impairment; adjust dose if estimated CrCl < 50 mL/min

Empiric Antibiotic Therapy† UTI Without Pyelonephritis
- Ciprofloxacin* 500 mg Q12h PO x 7 days, or
- TMP/SMZ* 160/800 mg Q12h PO x 7 days, or
- Nitrofurantoin* 100 mg Q12h PO x 7 days

Empiric Antibiotic Therapy† UTI With Pyelonephritis
- Ciprofloxacin* 500 mg Q12h PO or IV x 7 days or
- Levofoxacin* 750 mg Q24h PO or IV+ x 5 days, or
- TMP/SMZ* 160/800 mg Q12h PO x 14 days

Are criteria for PO antibiotics met?
1. IV antibiotic for ≥48 hours and able to tolerate oral;
2. No vomiting or diarrhea or NPO;
3. Clinical Improvement: Temperature < 38°C, systolic BP >90 mmHg, HR <100, and normal white blood cell count or a decrease of at least 2000 cells/μL over the last 24 hours

Discontinue IV therapy. Begin oral therapy.

Note: Asymptomatic patients with bacteria in the urine do not have a UTI and are not candidates for treatment with antibiotics.

long-term care facilities reduce unnecessary health care costs. The algorithms can be used in conjunction with other tools that address management of changes in condition in long-term care settings, such as AMDA Clinical Practice Guidelines, the Interventions to Reduce Acute Care Transfers (INTERACT) care paths, and evidence-based, expert consensus derived clinician order sets. Together, these tools can improve antibiotic utilization and reduce the likelihood that antibiotic resistance will continue to rise in the future.

References

Algorithm for the Management of Catheter-Associated Urinary Tract Infections (CAUTI) in Older Adults

Assess for signs or symptoms of CAUTI:
- Fever >100.4°F (or an increase of 1.5°F above baseline), new costovertebral tenderness, rigors, new onset delirium, acute hematuria, lower abdominal pain, especially if recent obstruction or trauma
- In patients with spinal cord injury, fever, pain over kidney or bladder during urination, onset of urinary incontinence, increased spasticity, autonomic dysreflexia or sense of unease may be compatible with CAUTI
- Note: In catheterized patients, presence of odorous or cloudy urine alone should not be used as an indication for urine culture or antimicrobial therapy

Are symptoms of CAUTI present?

Criteria met for treatment with antibiotics?

Empiric Antibiotic Therapy CAUTI
Assess for any antibiotic allergies and consider treatment with:
- Ciprofloxacin* 500 mg Q12h PO x 7 days or
- Levofoxacin* 750 mg Q24h PO or IV x 5 days, or
- TMP/SMZ* 160/800 mg Q12h PO x 7 days

- Perform ongoing monitoring of infection, response to therapy and antibiotic adverse effects.
- Discontinue antibiotics if cultures are negative.
- Adjust antibiotic choice, dosing, or duration based on: renal function, non-response, slow response (extend treatment duration to 10-14 days), culture and sensitivity (C&S) information, and/or adverse drug effects.
- Agents with a narrower spectrum of antimicrobial spectrum are preferred.
- If C&S reveals fungal CAUTI caused by Candida species switch to Fluconazole 200—400 mg PO or IV daily for 14 days or other, appropriate, susceptible, antifungal agent
- Restrict catheter use to patients who have clear indications (do not use to treat UI), reassess and document continued need regularly, remove as soon as possible. In cases where catheters are permanently removed during treatment, the duration of treatment remains the same as recommended above.
- Note: Bladder irrigation (e.g., antimicrobial agents, acetic acid, saline, iodine, etc.), is not recommended to treat CAUTI, or for prophylaxis against CAUTI, in non-surgical patients with long-term catheter placement.
- The use of systemic antibiotics and/or cranberry juice have not proven to be useful in preventing CAUTI.

Where: IV=intravenous, Qxh=every x hours, PO=oral SC=subcutaneous, Scr=serum creatinine, TMP/SMZ=trimethoprim/ sulfamethoxazole, UTI=urinary tract infection, UI=urinary incontinence

*Requires dosage adjustment in renal impairment. Antibiotics should be ordered with a duration –limited stop date to avoid overuse.

Fig. 2. Algorithm for the management of catheter-associated urinary tract infections (CAUTI) in older adults.
Algorithm for the Management of Upper Respiratory Tract Infections in Older Adults

Patient presents with signs and symptoms of URI.
Evaluate vital signs, fluid intake/output.
Implement hydration with oral/IV/SC fluids as indicated and symptom management as appropriate.
Consider blood work if indicated.

Monitor vital signs, fluid intake/urine output, signs and symptoms for 3-7 days.

Viral

Symptoms improved?

Yes
Continue current measures and monitoring

No
Evaluate for possible bacterial infection.
Consider x-ray if appropriate.

Bacterial Pharyngitis

Penicillin VK * 250 mg Q6h PO x 10 days
Penicillin Allergic
Azithromycin 500 mg PO day 1 then 250 mg PO days 2-5

Bacterial Rhinosinusitis

Amoxicillin/clavulanate * 500/125 mg Q8h PO x 10 days, or Amoxicillin/clavulanate * 875/125 mg Q12h PO x 10 days
Penicillin Allergic
Doxycycline 100 mg Q12h x 10 days, or Levofloxacin* 500 mg Q24h x 10 days

- Adjust antibiotic choice and/or dosing based on: renal function and/or adverse drug effects.
- Discontinue antibiotics if cultures, where available, are negative.
- Agents with a narrower spectrum of antimicrobial spectrum are preferred.
- Perform ongoing monitoring of signs/symptoms and response to therapy.

Where: IV=intravenous, Qxh=every x hours, PO=oral SC=subcutaneous
§The vast majority of upper respiratory tract infections are viral and should be treated with supportive measures.
¶Distinguish bacterial infection from sore throat/laryngitis secondary to seasonal allergies
*Requires dosage adjustment in renal impairment. Antibiotics should be ordered with a duration –limited stop date to avoid overuse

Fig. 3. Algorithm for the management of upper respiratory tract infections (URIs) in older adults.
Algorithm for the Management of Bacterial Pneumonia in Residents of Long-term Care

Patient presents with signs and symptoms of pneumonia
- New or worsening cough and shortness of breath, inspiratory chest pain, decrease in oxygen saturation (< 88 mmHg), HR > 125/min, RR > 24/min

Criteria met for treatment with antibiotics (i.e. signs and symptoms noted above)
- assess for medication allergies
- assess for renal impairment; adjust doses if estimated CrCl < 50 mL/min

Empiric Antibiotic Therapy: Outpatient (Community)-Acquired Pneumonia
- Resident has been in the facility <72 hours when pneumonia symptoms present, and
- Resident was admitted from the community

Empiric Antibiotic Therapy: Hospital and Health System -Acquired Pneumonia
- Resident has been in the facility > 72 hours when pneumonia symptoms present, or
- Resident was admitted from the hospital or other institutional setting

Amoxiclav* 875/125 mg Q12h PO x 7-14 days, or Levofloxacin* 500-750 mg Q24 h PO x 7-14 days, or Doxycycline 100 mg Q12h PO x 7-14 days

Ceftriaxone* 1-2 gm Q24 h IV/IM x 7-14 days, or Levofloxacin* 750 mg Q24h IV x 7-14 days, PLUS Vancomycin * 30 mg/kg/day divided Q6-12h IV x 7-14 days if gram positive bacteria (e.g. MRSA) suspected

Where: Amox/clav=amoxicillin/clavulanate, BP=blood pressure, HR=heart rate, IV=intravenous, gm=grams, MRSA=methicillin resistant Staphylococcus aureus, NPO=nothing by mouth, PO=oral, Qxh=every x hours, RR=respiratory rate, SC=subcutaneous, T=temperature. *Requires adjustment in renal impairment. Antibiotics should be ordered with a duration-limited stop date to avoid overuse.

Discontinue IV therapy. Begin oral therapy.

Yes

Are criteria for PO antibiotics met?
1. IV antibiotic for ≥ 48 hours and able to tolerate oral;
2. No vomiting or diarrhea or NPO;
3. Clinical Improvement: T < 38°C, systolic BP >90 mmHg, RR <24, HR <100, and normal white blood cell count or a decrease of at least 2000 cells/μL over the last 24 h.

No

- Adjust antibiotic choice and/or dosing based on: renal function and/or adverse drug effects.
- Discontinue antibiotics if cultures, where available, are negative.

- Agents with a narrower spectrum of antimicrobial spectrum are preferred.
- Perform ongoing monitoring of signs/symptoms and response to therapy.

Fig. 4. Algorithm for the management of bacterial pneumonia in residents of long-term care.
Algorithm for the Management of Uncomplicated, Mild or Moderate, Non-Purulent Skin and Soft Tissue Infections (SSTIs)

- Patient presents with uncomplicated (stable vital signs, no sepsis, non-diabetic foot infections), mild or moderate, non-purulent, bacterial SSTI (e.g., cellulitis, erysipelas) in an extremity.
- Evaluate vital signs. Check for antibiotic allergies and prescribe accordingly.
- Use of double antibiotic coverage is not indicated for mild or moderate, non-purulent, bacterial SSTI.
- C&S of blood or cutaneous aspirates are not recommended. May consider C&S of blood in cases of unstable vitals and/or chemotherapy, or immunodeficiency.
- Implement compression and elevation of affected extremities as appropriate.

Mild
(typical cellulitis/erysipelas with no focus of purulence)

- Cephalaxin* 500 mg PO Q6h x 5 days
- Clindamycin 300 -450 mg PO Q6 h x 5 days , OR
- TMP/SMZ* 160/800 mg PO Q12h x 5 days

Mild or moderate?

Moderate
(typical cellulitis/erysipelas with systemic signs of infection)

- Cefazolin* 1 gm IV Q8h x 5 days
- Suspected MRSA,
- Vancomycin* 30 mg/kg/day IV Q12h x 5 days

Evaluate clinical response daily

- If symptoms improved, continue current measures and monitoring
- If symptoms worse or unchanged, consider changing antibiotics, and/or assessment for underlying abscess.
- If adequate, but slow response, consider increasing total duration of therapy to 7-10 days.

At 3-5 days:
- Perform ongoing monitoring of signs/symptoms and response to therapy (including vancomycin trough).
- Adjust antibiotic choice, dosing, and duration based on: renal function, non-response, rate of cure, indicators of sepsis, and/or emergence of adverse drug effects.
- Agents with a narrower spectrum antimicrobial spectrum are preferred and should be used for the shortest duration feasible.
- Follow up after completion of antibiotics to ensure cure.

Where: Qxh=every x hours, C&S = culture and sensitivity, gm = gram, PO = oral, IV = intravenous, MRSA = methicillin-resistant Staphylococcus aureus, TMP/SMZ trimethoprim/sulfamethoxazole

*Requires dosage adjustment in renal impairment. Antibiotics should be ordered with a duration-limited stop date to avoid overuse

\[\text{Suspected MRSA;} \]

\[\text{Clindamycin has demonstrated resistance in some geographic areas, an alternative is: Doxycycline} 100 \text{mg PO Q12h} \times 5 \text{days.} \]

Fig. 5. Algorithm for the management of uncomplicated, mild or moderate, nonpurulent skin and soft tissue infections (SSTIs).